skip to main content


Search for: All records

Creators/Authors contains: "Lu, Chaoqun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lignin is an abundant and complex plant polymer that may limit litter decomposition, yet lignin is sometimes a minor constituent of soil organic carbon (SOC). Accounting for diversity in soil characteristics might reconcile this apparent contradiction. Tracking decomposition of a lignin/litter mixture and SOC across different North American mineral soils using lab and field incubations, here we show that cumulative lignin decomposition varies 18-fold among soils and is strongly correlated with bulk litter decomposition, but not SOC decomposition. Climate legacy predicts decomposition in the lab, and impacts of nitrogen availability are minor compared with geochemical and microbial properties. Lignin decomposition increases with some metals and fungal taxa, whereas SOC decomposition decreases with metals and is weakly related with fungi. Decoupling of lignin and SOC decomposition and their contrasting biogeochemical drivers indicate that lignin is not necessarily a bottleneck for SOC decomposition and can explain variable contributions of lignin to SOC among ecosystems. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract. The land of the conterminous United States (CONUS) hasbeen transformed dramatically by humans over the last four centuries throughland clearing, agricultural expansion and intensification, and urban sprawl.High-resolution geospatial data on long-term historical changes in land useand land cover (LULC) across the CONUS are essential for predictiveunderstanding of natural–human interactions and land-based climatesolutions for the United States. A few efforts have reconstructed historicalchanges in cropland and urban extent in the United States since themid-19th century. However, the long-term trajectories of multiple LULCtypes with high spatial and temporal resolutions since the colonial era(early 17th century) in the United States are not available yet. Byintegrating multi-source data, such as high-resolution remote sensingimage-based LULC data, model-based LULC products, and historical censusdata, we reconstructed the history of land use and land cover for theconterminous United States (HISLAND-US) at an annual timescale and 1 km × 1 km spatial resolution in the past 390 years (1630–2020). The results showwidespread expansion of cropland and urban land associated with rapid lossof natural vegetation. Croplands are mainly converted from forest, shrub,and grassland, especially in the Great Plains and North Central regions.Forest planting and regeneration accelerated the forest recovery in theNortheast and Southeast since the 1920s. The geospatial and long-termhistorical LULC data from this study provide critical information forassessing the LULC impacts on regional climate, hydrology, andbiogeochemical cycles as well as achieving sustainable use of land in thenation. The datasets are available at https://doi.org/10.5281/zenodo.7055086 (Li et al., 2022). 
    more » « less
  3. This datasets contains the supporting data for "Heavy Precipitation Impacts on Nitrogen Loading to the Gulf of Mexico in the 21st Century: Model projections under future climate scenarios" published in Earth's Future.
     
    more » « less
  4. Through integrating multi-source data including high-resolution remote sensing image-based land use and land cover (LULC) data, model-based land use products, and historical land archives, we reconstructed historical LULC at an annual time scale and 1 km x 1 km resolution in the contiguous United States (CONUS) from 1630 to 2020. Compared to other historical LULC datasets, our data can capture the major characters of LULC as well as provide more accurate information with higher spatial and temporal resolution. The LULC data can be used for regional studies in a wide range of topics including LULC impacts on the ecosystem, biodiversity, water resource, carbon and nitrogen cycles, and greenhouse gas emissions.

     
    more » « less
  5. We used incubations of soil and stable isotope measurements to measure lignin, litter, and SOC decomposition over an 18-month lab incubation and assessed their relationships with geochemical, microbial, N-related and climatic factors across 156 mineral soils collected from 20 National Ecological Observatory Network (NEON) sites, which span broad biophysical gradients (climate, soil, and vegetation type) across North America. The soils were collected in 2019. Lignin decomposition and biogeochemical variables were also measured in an approximately 12-month field incubation. 
    more » « less
  6. This dataset includes the time-series maps of the model-estimated N2O emissions, covering the lower U.S. spanning from 1900 to 2019. 
    more » « less